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A numerical study is presented of the dispersion relation for the linearized operator about the kink or
interfacial wall solution to a model of spinodal decomposition of an incompressible binary fluid. The
essential spectrum of the linearized operator does not stay well separated from the Nambu-Goldstone-
(NG-) like mode representing purely interfacial motion. For large wave vector k along the interface, the
NG-like mode decays as w~ k>, while for small wave vector it decays as w ~ k. However, the bottom of
the essential spectrum decays like @~ k? and at small enough k, it intersects the point spectrum, the
NG-like mode. The dispersion relation of the NG-like modes as one varies the viscosity indicates a
nonuniversal crossover behavior from w~ k> to @~ k, due to the interaction between NG-like mode and

the essential spectrum.

PACS number(s): 64.70.Ja, 64.60.—i

The asymptotic growth law of the average pattern size
L in the spinodal decomposition process of an incompres-
sible binary fluid (critical quench case) in three-space ap-
pears to be given by L ~¢ with a possible crossover from
L ~t'/3 at earlier times [1]. Actual experimental results
[2], computational studies [3,4], and dimensional analysis
from an interfacial equation of motion [5] suggest that
the L ~t is a universal asymptotic relation. However,
numerical simulations based on this equation exhibit
unusual behavior and sometimes instability at small
values of the viscosity. The dispersion relation [6] for the
Cahn-Hilliard [7] (CH) equation has proved useful in
studying the pre-asymptotic and asymptotic growth law
in spinodal decomposition in binary alloys at critical
quench [8,4]. In the CH case, the dispersion relation was
empirically found to be universal, explaining the empiri-
cally found pre-asymptotic universality in the ordinary
spinodal decomposition. Thus it is expected that the
study of the dispersion relation of waves on the interface
of a model appropriate to incompressible binary-fluid
phase separation is highly relevant to understanding the
pre-asymptotic behavior of fluid systems.

In this paper, the linearized operator of small fluctua-
tions about the kink solution is studied for a model by
Kawasaki [9]. The essential spectrum is found not to be
separated from the point spectrum. The study of the
dispersion relation for the Nambu-Goldstone (NG)
branch of the point spectrum and its interaction with the
essential spectrum leads us to the conclusion that the
pre-asymptotic universality found in the CH case [8] does
not exist.

In the CH case, the point spectrum is a branch con-
tinuous to the true NG mode for the kink solution. This
will be referred to as the NG branch. The essential spec-
trum of the CH case was separated from the NG branch
except at k =0, where k is the wave vector along the flat
interface. In the present case, as in the CH case, the bot-
tom of the essential spectrum is found to follow w~k? at
small k while the NG branch follows w~k. Thus the
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essential spectrum is not separated from the NG branch
even at finite k.

The equation of motion for the phase separation of a
binary incompressible fluid is [9]

%‘tﬁ=Mv2u(r>~v¢(r)~fddr'T(r~r')-v'z/;(r')p(r') ,

(1)
where u=—DV?+puy(1) is the chemical potential and
the Oseen tensor T(r’) is defined through

[ d% T(r)exp(—ik-1)=T(k)= 1|, _kek

_nk2 ! k?

, (2)

where 7 is the kinematic viscosity, | is the identity ma-
trix, and ® is the outer product.

Unfortunately, the linearized operator is very complex
in this case, so one is content to set up the eigenvalue
problem in such a way as to be able to numerically ex-
tract out the behavior with accuracy.

Define y(z) as the equilibrium wall solution from
— D2 Y(z)+pug(¥(z))=0, where ¢(0)=0, ¥( o ) =1, the
upper bulk equilibrium value, and Y¥(— )= _, the
lower bulk equilibrium value. To find the equation of
motion for small fluctuations about the wall solution, it is
assumed that ¥(r,1)=1(z)+u (r)e "*. To first order in
u (r) one gets

—Au(r) =MV [ui(Py(z))u(r)—DV?u(r)]
—(V%(z))-fddr T(r—1')(V'¢o(2))

X [ue(toz’)u(r)—DV3u(r)] ,
3)

where p(4¥)=086uy/8¢. The first term of the right-hand
side of Eq. (3) is the linearized Cahn-Hilliard operator.
Only the z component of V(z) survives, and one may
Fourier transform in the two-space transverse to the z
axis. First define

1984 ©1993 The American Physical Society



48 DISPERSION RELATION AROUND A KINK SOLUTIONIN ...

k2
kEE?

dkz i
Th(z)= [ —Ze —

, 4
2w n(k*+k2) @

where k is a Fourier mode in the x and y coordinates.
Likewise define

L (z)=—D (3 — k) +ui(vo(2) . (5)

The Fourier transform of Eq. (3) in coordinates trans-
verse to z now reads
J

fdz”Ek(z —2"uy (2" ) =ML (2)u; (2) +———fdz"Ek(z —2")iz") [ dz' T (2" —2" Wiz

Solving for TX (z —z') and G*(z —z') yields

1 T
—+|z—2' klz—2']

Tk ety —
=(z—2') X

1
4n
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—Kuk(z)=M(82—kZ)Lk(z)uk(z)
—yi2) [ dz'Th (z =2 )Wz Ly (2 (2) .
(6)
Let GXz—z') be the Green’s function defined as
(32—k?)GXz —2z')=8(z—z'), with the boundary condi-
tion G,—0 as |z|—>oo. Define E,(z—2z')
=—2kG*z—z') and apply G*to Eq. (6) to get

WL (z"u,(z") . (7)

Gz —z')=— L gKz=21 (8)

2k

Integration by parts transforms the second integral of the second term on the right-hand side of Eq. (7) and one arrives

at

2kfdz' —kz=2ly, (27)

—MLk(z)uk(z)+——fdz" —klz =2y (z7)

(z), as an ap-

If one substitutes the NG mode, ¢? I
klz ~1 one finds that

proximation for small k, and e
A~k as expected.
To be more explicit, let us use

p=—DV*)+1p— A tanh[tanh (4 ~"y], (10)

the chemical potential relevant to the cell dynamical sys-
tem (CDS) method [8,10] used in the existing three-
dimensional incompressible binary-fluid simulations [3,4].
The general asymptotic results should not critically de-
pend on the potential used. The various eigenvalue
branches are determined as functions of k. The parame-
ters D and M in the CDS models [10,4], called Dpg and
M cps, respectively, are proportional to the D and M used
in this paper. In three-dimensional space, D = LD cpg
and D =1Dpg due to the definition of the neighbor aver-
age used. Dcpg=0.7, 4=1.3, Mcps=1.0, and p=1.0
are chosen to make contact with results in another paper
(4]

The spectrum of Eq. (9) is computed by solving it as a
generalized eigenvalue problem (A/2k)Bu=Au. B is
the discrete version of the left-hand side operator of Eq.
(9) and A is the right-hand side operator. The discrete
eigenvalue problem is computed over a lattice spanning
—10<z <10, using 384 equally spaced points. Figure 1
shows the branches of w/(2k) vs k. Note that the lowest
branch becomes nearly a constant at small £ which im-
plies that w~k. If it may be assumed that there is only

294z uy (2")+ [dz'e M gz g (2)

fdz'{sgn(z"-*z')x/}{)'(z')-i- |z —2' |z’ )} e T =2y, (2")

|

9)

[
one representative length scale other than the thickness

of the interface (i.e., the correlation length), and if the
essential spectrum does not interfere with the NG
branch, then this would imply that the L ~¢ asymptotic
law is exact. This is the NG branch of the point spec-
trum which corresponds to the decay of interfacial fluc-

wl/(2K)
/

0.01

FIG. 1. Plot of w/(2k) vs k for n=1. Computed on the in-
terval —10<z <10. White circles denote computed eigenval-
ues. The lowest branch, plotted with a dark black line, is the
NG-like mode which describes interfacial motion. The upper
branches are extended states which are the finite-size version of
the essential spectra. w and k are in units of the inverse
cos(time step) and lattice spacing, respectively.
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tuations analogous to those found in the binary-alloy
case. However, there are several pairs of modes that lie
above the NG mode. As shown below, they are the
finite-size representations of the essential spectrum, and
intersect the point spectrum.

Figure 2 gives the result of the same eigenvalue prob-
lem on a larger system size, —30 <z <30, over 512 equal-
ly spaced points. The density of the upper modes be-
comes higher, which indicates that the modes above the
NG mode are in the essential spectrum of the infinite sys-
tem. These problematic modes now impact on the NG
branch. Note that the NG branch from the previous
smaller system (Fig. 1) follows a branch through the
essential spectrum. The eigenfunction corresponding to
this branch, an NG-like mode, are identical to the NG
branch found in the previous smaller system. These
eigenfunctions tend to decay exponentially at the tails,
while the other “eigenfunctions” show wavelike behavior
at large z, as is shown later. Unfortunately, the existence
of an essential spectrum which is not well separated from
the point spectrum means it is impossible to construct a
proof analogous to the Cahn-Hilliard case [8] on the
k —0 behavior of the NG branch.

To make a more definitive examination of the disper-
sion relation as related to the growth law, the computed
eigenvalues are replotted with k vs @™ ! in Fig. 3. This is
convenient since dimensionally !~ and is thus more
like a growth law plot of (k) vs t. Figure 3 is a log-log
plot of k vs @~ ! on an even larger system defined on
—60=z =60. The plot of the NG branch has the expect-
ed form of k ~w!”3 for small ™! or short time, and
k ~w for large »~ ! or long time. Note that the bottom
of the essential spectrum, which in this plot is the top set
of essential spectrum lines, behaves like w~k? The
dispersion relation o~ k? is reminiscent of ordinary bulk
diffusion, although in the present case this is the bottom
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FIG. 2. Plot of w/(2k) vs k for =1, computed on the inter-
val —30=z =<30. Computed eigenvalues are denoted by white
circles. The dark black line is the NG-like mode dispersion re-
lation, computed on the interval —10=<z=<10. In the
—10=z =10 case, it did not intersect the extended states. In
the present case, the lowest branch for k > 0.6 is the NG-like
mode. The lowest branch for k <0.6 are extended states. The
set of points which lie along the dark black line are NG-like
modes, although they lie within the essential spectrum.
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FIG. 3. Plot of k vs @~ ! for n=1. The NG-like branch com-
puted on the interval —10 <z < 10 is represented by the dotted
line. The white circles represent the various eigenvalues com-
puted on the interval —60=<2z <60. Points calculated for the
larger system which lie close to the NG-like branch computed
on the small system are themselves NG-like modes. The dashed
line is the bottom of the essential spectrum as estimated from
the linearized Cahn-Hilliard term of Eq. (3) by Eq. (11). Note
the various power-law behaviors of the different branches in
different regimes.

of the essential spectrum.

The bottom of the essential spectrum is expected to be
roughly that of CH case for large 7 since the k2 term in
the binary-fluid dispersion relation is multiplied by 7.
The bottom of the CH essential spectrum can be comput-

ed explicitly using a theorem by Rota [11,8] as
Dpottom ess =MDk +Mp'(Po(£ 0 ))k? (11

where u'(¥)=38u/6vy, and yYy(z) is the equilibrium wall
solution. In our case, ¢¥'(¢y(z— ©))~0.459, M = %, and
D=(41)0.7. The essential spectrum could be ignored in
the CH case since they were isolated away from the
slowest decaying branch, the NG branch for which
o~ k>3 for small k [8].

The effect of larger 1 can be seen by examining the ei-
genvalues for =10 in Fig. 4. In the infinite volume lim-
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FIG. 4. Plot of k vs w™ ! for n=10. The circles represent ei-
genvalues computed on the interval —60=<z <60. The dark
black line represents the lowest branch computed on the smaller
interval. The dotted line represents the bottom of the essential
spectrum estimated from the linearized Cahn-Hilliard term.
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it, the bottom of the essential spectrum should be almost
like the Cahn-Hilliard case and thus, as 7 gets larger, the
NG branch separates further from the essential spectrum
while the NG branch is in the % regime. Eventually, the
NG branch becomes w~k, and must intersect with the
bottom of the essential spectrum. If 7 is large, then the
NG branch behaves essentially like @~k when it hits the
essential spectrum. If 1 is not very large, the NG branch
will hit the essential spectrum before it reaches the
asymptotic behavior of w~k. In the case of =1 the
latter occurs.

It is interesting to inspect the form of the eigenfunc-
tions generated by the above which correspond to the
NG branch and the lowest paired eigenvalues which
represent the bottom of the essential spectrum. The
eigenfunctions for =10 are shown in Fig. 5. The NG-
like mode has the form of the normal kink solution NG
mode. The NG mode represents simple translations of
the interface. The NG-like mode is the z-axis part of a
decaying interfacial fluctuation of wave-vector k trans-
verse to z. The general form of these eigenfunctions are
qualitatively independent of 7. The discrete representa-
tives of the essential spectrum in Fig. 5 have two forms.
The first look somewhat like the NG mode in the middle,
but has a symmetric wavelike structure at large z. This
implies interfacial motion linearly couples with relaxa-
tions of bulk fluctuation. In this case, the wall moves,
while one phase loses bulk and the other gains. The other
form is a antisymmetric wavelike structure which implies
a type of bulk mode which does not move the interface,
but is a relaxation of fluctuation in the bulk amplitude.
In this case, the complementary bulk phases exchange
material and either rid or rather their own phase.

It must be stressed that these are decaying fluctuations
so that if the fluctuation does not exist, they will have no
effect on the kinetics. The decay of fluctuations which
differs from the o~k type could modify the growth law
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FIG. 5. Representative eigenfunctions computed for =10
at k=0.2 on interval —30=<z <30. The various functions are
placed in order of their corresponding eigenvalue. The lowest
mode is represented in solid black. It is an NG-like mode,
which generates translation of the interface. The four lowest
extended states are represented by broken lines. The extended
states have two types, one symmetric, with an NG-like central
part. The antisymmetric form does not translate the interface.
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in the full nonlinear problem. On the other hand, if the
bulk fluctuations are already tamed as the system enters
the essential spectrum region, it may be that there is no
coupling, and the interfacial fluctuations decay by the
NG-like mode even if it exists in the essential spectrum.
During domain connection and disconnection, which
happens frequently in near critical quench situations, the
bulk is often perturbed out of equilibrium. In this case,
the essential spectrum may play a role in the kinematics.

In Fig. 6, the NG branch dispersion relations of many
different % are scaled by plotting %'k vs 7732w,
While this causes the curves to qualitatively overlap in
the small and intermediate k regions, one can see that the
crossover region admits many rather different knee
bends. In this sense, there is no universality in the way
the crossover to L ~t occurs. The same type of disper-
sion relation universality as in the Cahn-Hilliard case
does not appear here. The curves do coincide roughly,
and taken together could accidentally suggest a universal
curve.

In test simulations [4], where the CDS model parame-
ters were fixed as mentioned above, but n was adjusted,
two main difficulties appeared. The first occurred at very
low viscosity, e.g., n~0.1. In this case, the bulk phase of
the domains reached only about 0.8 times the equilibrium
bulk value, even as the domain morphology coarsened as
expected. The other problem occurred at about ~0.5.
In this case, the domains reached the equilibrium value,
but the simulation was unstable afterwards. Small time
steps and accurate updating of the velocity field were
necessary to do the simulation. These difficulties appear
to be related to the essential spectrum and point spec-
trum emerging. This is further discussed in Ref. [4].

In summary, the dispersion relation of the NG branch
of the point spectrum corresponding to the relaxation of
interfacial fluctuations was shown to obey the form w~k
at small k£ by the numerical study of the linearized opera-
tor. However, the point spectrum merges with the essen-
tial spectrum which arises primarily from the CH term in
the dynamics. This suggests that the pre-asymptotic
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FIG. 6. The NG-like mode dispersion relations for various 7
are potted with all other model parameters fixed. The scaling
k—n'"k and o~ '—n 7320 brings the curves nearly together;
however, the actual knee of the curve is not the same.
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universality found for the CH case does not exist in the
binary-fluid case and the existence of the essential spec-
trum does appear to have a material effect binary-fluid
spinodal decomposition particularly in simulations.
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